EU Renewable Energy Masters

SPECIALISATION SYLLABUS Solar thermal energy

Contents:	TOTAL HOURS	ECTS
1. Fundamentals	60	6
2. Simulation and system optimization	60	6
3. Energy	60	6
4. Materials	50	6
5. Project, case study and innovation	50	6
TOTAL HOURS	280	30

Module 1: Fundame	ntals, 6 ECT	S	
Syllabus	Lectures	Tutorials	Laboratory
Reminder (1.0)			15
Heat transfer			10
Materials			5
Combined heat and mass transfer (1.1)	15		10
3 ECTS			
Conduction			
Fundamental Equations			
Balance equations			
Examples			
Convection			
Fundamental Equations			
Forced Convection (resolution of the			
Couette flow with temperature)			
Natural Convection (approximation of			
Boussinesq)			
Adimensionnal equations			
Introduction to CED			10
Introduction to CFD			10
Radiative heat transfer (1.2), 3 ECTS	20		
Fundamentals of Thermal Radiation			
Radiative Exchange between Surfaces			
 Radiative properties of opaque 			
surfaces			
 View factors 			
Radiative exchange between grey and			
diffuse surfaces			
Equation of Radiative Transfer in			
Participating Media			
Radiative Properties of Participating			
Media			
 Radiative properties of molecular 			
gases			
 Radiative properties of particulate 			
media			
 Radiative Transfer through Participating 			
Media			
Lograing outcomes			
Learning outcomes The student will be familiar with radiative heat			
transfer and be practised in solving problems			
including radiation.			
Module total	35		25
module total	33		23

Module 2 : Simulation and system optimization, 6 ECTS			
Syllabus	Lectures	Tutorials	Laboratory
Solar Conversion (solar heating/cooling) Thermo-economics (2.1), 3 ECTS	20	10	
Electricity market	9		
 Solar energy conversion (Cooling, 	12		
heating and/or power generation			
Energy systems optimization	9		
Solar concentrating systems and receiver (2.2), 3 ECTS	10	10	10
The solar resource for concentrating systems	3		
 Introduction to concentration optics 	3	2	
·	Ü	_	
Linear concentration: trough and linear Fresnel	2	2	
	_	_	
 Point concentration: Dish and Tower (Central receiver systems) High concentration systems: solar furnace and compound parabolic concentrator (CPC) 	2	2	
 Solar receivers (absorbers) for linear concentrators 		2	
 Solar receivers for point focusing systems 		2	
Learning outcomes			
The student will be familiar with simulation tool			
and optimization method dedicated to CSP.			
Module total	30	20	10

3

Module 3 : Energy, 6 ECTS			
Syllabus	Lectures	Tutorials	Laboratory
Solar Collectors theory and technologies	20	6	4
(3.1), 3 ECTS			
 Energy collection and heat transfer in 	6	2	
solar collectors – characteristics of			
materials			
 Design and simulation 	6	_	
 Overview of the solar collectors 	4	2	
technologies	_	_	
 Implementation 	4	2	4
Solar power plants (3.2), 3 ECTS	15	9	6
 Introduction to Concentrating Solar 	5	3	
Power (CSP): various options, plants in			
operation, industry			
 Tools for CSP design and performance 	5	3	
evaluation	_	_	
 Techno-economics of CSP 	5	2	_
Implementation			6
Learning outcomes			
The student will be familiar with solar collectors			
design and technologies and with solar power			
plants technologies for energy applications.			
Module total	35	15	10

Module 4 : Materials, 6 ECTS			
Syllabus	Lectures	Tutorials	Laboratory
Thermal storage (4.1), 3 ECTS	20	10	
 Overview of thermal storage (TS) 			
 Needs of TS in solar applications 			
 Available technologies (sensible, latent 			
heat, thermochemical,)			
Related materials			
 Heat transfer interfaces and fluids 			
 Implementation of TS 			
Management and strategy of TS			
Innovative materials for energy conversion	10	5	5
(4.2), 3 ECTS			
 Selective surfaces for solar receiver 			
 Materials for low temperature solar 			
application			
 Thermos optical properties of materials 			
for solar thermal applications			
Learning outcomes			
The student will be familiar with both storage			
materials and technologies and innovative			
materials. He will be able to choose which one			
is the most adapted to a specific solar			
application.			
Module total	30	15	5

Module 5 : Project, case study and innovation, 6 ECTS			
Syllabus	Lectures	Tutorials	Laboratory
Solar fuels (5.1), 3 ECTS	20	10	
 H₂ from decarbonization of hydrocarbons 	6	3	
 Reforming/Gasification 			
 Cracking 			
 Carbothermal reduction 			
 H₂ from water 	6	3	
 Electrolysis/Thermolysis 			
 Thermochemical cycles 	_		
 Routes towards synthetic liquid fuels 	2		
 Solar chemical reactors 	6	4	
Project, case study (5.2), 3 ECTS	5	15	
Project	5		
 Case study: Parabolic trough plant 		5	
 Case study: Central receiver plant 		5	
Case study: Dish-engine plant		5	
Learning outcomes			
The student will be familiar with the different			
routes foreseen to produce solar fuels in the			
future. He will be able to analyse different case			
study related to CSP technologies.			
Module total	25	25	

5